© ComNews
20.02.2024

Группа страховых компаний Югория внедрила корпоративную ModelOps-платформу в среду применения. Проект реализован на открытых технологиях компанией GlowByte. Решение позволило быстро создавать модели, проводить их обучение и интегрировать в рабочие процессы.

Платформа обеспечивает удобными инструментами все категории пользователей, от разработчиков до ИТ. Это было достигнуто благодаря внедрению методологии разработки, организации рабочей среды для команды Data Science и созданию системы, способной легко масштабироваться под потребности бизнеса.

В перспективах проекта — развитие и реализация бэклога, улучшение КХД и интеграции со стороны ML, выстраивание оптимальных процессов. Планируется увеличение количества моделей и команд разработки, а также внедрение новых инструментов и их кастомизация под требования.

Платформа интегрирована с источниками данных страховщика и состоит из различных инструментов кластера Kubernetes. ML-модели разрабатываются посредством JupyterLab, а с помощью инструмента Gitlab CI/CD построен единый пайплайн вывода модели от стадии разработки до применения в продакшене. В качестве оркестратора применения ML-моделей используется Airflow.

Евгений Чернобуров, руководитель страховой практики GlowByte, сказал: "Нам удалось построить удобное и быстрое решение для MLOps, доступное не только огромным финансовым организациям, но и заказчикам, которые только начинают строить ML в своей инфраструктуре. Это еще один хороший пример сборки на Open-source в страховом секторе".

"Основной вызов — сделать MLOps доступным и с точки зрения обслуживания, и с точки зрения разработки, в то же время не лишить решение гибкости. Нашей целью было не просто установить компоненты, а дать пользователям удобную и понятную методологию, которая позволит решать более сложные задачи. Выбранный технологический стек позволил эффективно закрыть потребности заказчика. Кроме того, эти инструменты относительно легко поддерживать", — отметил Григорий Шутов, старший архитектор Advanced Analytics GlowByte.

Новости из связанных рубрик