Как технология распознавания лица помогает бизнесу и спецслужбам
За последние несколько лет в России и мире появилось множество стартапов, работающих с технологиями распознавания лиц. Самые заметные среди российских проектов – NtechLab, VisionLabs, "Вокорд", "Центр речевых технологий", ITV AxxonSoft и 3DiVi. Два из них привлекли внимание крупных инвесторов.
В NtechLab в мае этого года вложился фонд Impulse, связанный с Романом Абрамовичем. А в VisionLabs инвестировал в 2016 г. венчурный фонд АФК "Система" Sistema VC.
По данным исследовательской компании MarketsandMarkets, которые приводит Bloomberg, к 2021 г. объем рынка распознавания лиц достигнет $6,84 млрд. В 2016 г. он был вдвое меньше – $3,35 млрд.
Мошенники не пройдут
Самое масштабное внедрение технологии распознавания лиц среди российских банков произошло у "Почта банка" (создан ВТБ и "Почтой России"), рассказывает генеральный директор компании VisionLabs Александр Ханин. Сейчас 50 000 рабочих мест сотрудников банка оборудованы специальными камерами, которые умеют распознавать лицо, рассказывает советник предправления "Почта банка" Павел Гурин. В банке есть три базы изображений – фотографии сотрудников, клиентов банка и мошенников. Каждая фотография хранится в зашифрованном виде, как набор символов. Перед началом работы с клиентами сотрудник должен войти в систему банка. Для подтверждения личности он не только вводит пароль, но и фотографирует себя. После этого специальная программа преобразует фотографию в код и сравнивает его с кодом, хранящимся в базе. Если они совпадают, сотрудник начинает работу. Систему распознавания лиц используют и для внутренней аттестации, чтобы один не проходил тесты за другого и чтобы никто не мог зайти под чужим паролем и провести незаконную транзакцию.
Когда приходит клиент, камера верифицирует его аналогичным образом. Кроме того, программное обеспечение сравнивает изображение клиента с базой мошенников. Она пополняется и собственными усилиями банка, и с помощью межбанковского взаимодействия.
Деньги по фотографии
У "Тинькофф банка" нет отделений. Но по закону представитель банка обязан провести личную встречу с клиентом, поэтому работники "Тинькофф" фотографируют его с помощью специального мобильного приложения, которое преобразует изображение в обезличенный код, рассказывает директор по коммуникациям "Тинькофф банка" Дарья Ермолина. Дальше система сравнивает код с базой данных. Это позволяет убедиться, что перед представителем именно тот человек, который подавал документы, и что он не мошенник, а также сократить время обработки заявки.
"Открытие" внедрило денежные переводы по фотографии с помощью технологии распознавания лиц, рассказал директор по инновациям банка "Открытие" Алексей Благирев. Для этого достаточно сфотографировать получателя в мобильном приложении или загрузить его фотографию – система сама найдет данные человека в базе, чтобы отправить ему деньги.
Сбербанк в июле установил в Москве тестовый банкомат, где для совершения операций со счетом нужно только сфотографироваться, а не прикладывать пластиковую карту, рассказал представитель банка. Эксперимент продлится до конца 2017 г., после чего банк решит, внедрять ли технологию дальше. "Тинькофф банк" также сообщил о тестировании идентификации клиентов в банках.
Сбербанк использует технологию распознавания лиц при выдаче кредитов с 2014 г.
Прививка от очередей
В ритейле распознавание лиц используется, чтобы мотивировать покупателей, говорит генеральный директор компании NtechLab Михаил Иванов. Если человека узнают на входе в магазин и видят его историю покупок, то сотрудники магазина лучше знают, что ему предложить, объясняет Иванов. Например, если он покупал в магазине электроники телевизор, сотрудник его узнает, обратится по имени и предложит приобрести новый пульт.
В "Дикси" тестировали распознавание лиц клиентов для определения гендерного состава клиентов и для таргетированной рекламы в кассовой зоне и торговом зале, говорит директор IT-департамента ГК "Дикси" Владимир Муравьев. В X5 Retail Group технологию распознавания лиц используют пока в тестовом режиме – чтобы уменьшать длину очередей на кассах и для оптимизации торгового пространства. Система распознавания лиц может определить, сколько человек стоит в очереди, и отправить сигнал о том, что необходимо открыть дополнительную кассу. Видеоаналитика помогает проследить, где в магазине проходит больше людей, на что они обращают внимание, чтобы потом правильно расположить товары и промоматериалы.
Зона повышенной безопасности
Самый развитой мировой рынок технологии распознавания лиц – в сфере безопасности, говорит Иванов. В США лицевая биометрия широко внедрена на государственном уровне и используется сотрудниками полиции – в том числе и для проверки при выдаче водительских прав, рассказывает он. Кроме того, США и Европа используют идентификацию по лицу на паспортном контроле при пересечении границы.
Российские компании также предлагают использовать технологию распознавания лиц в сфере безопасности. Так, среди основных клиентов отечественной компании "Центр речевых технологий" – крупные стадионы. Когда болельщик приходит на стадион и прикладывает к валидатору именной абонемент, камера над валидатором подтверждает, что войти на стадион пытается именно владелец абонемента. Система не позволяет войти на спортивный объект людям из черного списка фанатов. Также "Центр речевых технологий" внедрил технологию распознавания лиц в аэропорту Южно-Сахалинска: когда туда заходят люди, которые находятся в розыске, система отправляет уведомление полиции и службе безопасности аэропорта.
NtechLab также разрабатывает продукт в области безопасности, который нужен госструктурам и спецслужбам: это софт, который находит людей по доступным базам, работает с их документами.
Большое будущее
В ближайшие годы технологии анализа лиц будут развиваться в двух направлениях, считает Ханин. Первое – переход к пониманию поведения человека: сейчас уже мало понимать, кто изображен на фотографии, важно знать, как человек себя ведет в разных ситуациях, например на собеседовании или при посадке на рейс. Второе направление – это встраивание чипов с компьютерным зрением в устройства, чтобы они смогли не только идентифицировать пользователя, но и проанализировать потоковое видео. Например, показать, когда конкретный человек заходил в помещение, или построить 3D-аватар прямо в телефоне.