© ComNews
17.03.2021

Компания Cognitive Pilot — крупный мировой разработчик систем искусственного интеллекта для беспилотного транспорта, входит в экосистему Сбера, объявляет о решении важной и сложной задачи, позволяющей разработчикам экономить десятки человеко-лет при разработках автопилотов, а также значительно упростить процесс разработки в этой области. Процесс основан на применении искусственного интеллекта и не требует участия человека.

Выбор разнообразных, репрезентативных данных из видеопотока до последнего времени являлся одним из наиболее серьезных препятствий при обучении нейронных сетей. На решение этой задачи в таких приложениях, как автопилотирование, могло уходить очень много времени. Для того, чтобы нейронная сеть могла с промышленной точностью распознавать объекты дорожной, полевой или иной сцены и тем самым обеспечивать безопасность при любых погодных условиях и времени суток, ее необходимо обучить на больших массивах данных, содержащих все возможные ситуации, которые только могут повлиять на процесс управления транспортным средством.

Традиционный, ручной подход к ее решению - трудоемкая, утомительная и длительная процедура. "Представьте, у нас длительность видеопотоков составляет более миллиарда кадров. Просмотреть их полностью, и произвести качественный отбор всех разнообразных изображений специалисту по разметке просто нереально. А в результате частичного отбора важные данные могут быть просто потеряны", - рассказывает руководитель департамента разработки беспилотных транспортных средств Юрий Минкин.

Специалисты Cognitive Pilot придумали подход, который позволяет нейронной сети выбирать из видеопотока разнообразные и репрезентативные данные автоматически.

"Мы используем метрику сравнения разных кадров. Так, в задаче автономного управления комбайном при его проезде по кромке мы выбираем кадры, в которых отклонения от среднего, больше определенной величины. Например, на изображении появилась "проплешина", или торчащая из земли часть опоры. По сравнению с общей дисперсией этот элемент дает большой скачок, и система этот кадр берет. А при проезде лесополосы картинки хоть и меняются часто (мелькают кусты, деревья), но особого разнообразия в видеопотоке мы не наблюдаем, отклонение от среднего ниже среднего и нас такие данные не интересуют", - объясняет Юрий Минкин.

Разработанный специалистами Cognitive Pilot механизм позволяет также отфильтровывать из видеопотока "мусорные" данные, никак не влияющие на процесс обучения, такие как перегон комбайна с одного поля на другое с поднятой жаткой, или моменты, когда он стоит на месте или проходит по участку маршрута с пренебрежительно малыми изменениями полевой сцены.

"Если раньше на обработку видеопотока при обучении нейронных сетей и создании датасетов могли уходить годы, то сегодня мы нажимаем на кнопку, и получаем результат", - заключает Юрий Минкин.

"Наши коллеги из Cognitive Pilot продемонстрировали огромное преимущество систем искусственного интеллекта над традиционными подходами. Эта инновация в разы сокращает время разработки и кардинально упрощает создание умных решений в одном из наиболее востребованных секторов рынка — беспилотниках. Благодаря этой технологии мы сможем увеличить функциональность существующих решений для автономного управления сельскохозяйственным и рельсовым транспортом и масштабировать наши проекты на новые российские и зарубежные рынки", - прокомментировал первый заместитель председателя правления Сбербанка Александр Ведяхин.

"У нас очень большой опыт по обучению нейронных сетей и созданию датасетов. В этой зоне мы в числе мировых лидеров. В отличие от многих игроков рынка ИИ для беспилотного транспорта, которые работают в основном с готовыми данными, публичными датасетами и используют их, как правило, в приложениях для одного направления, или агро, или automotive, или иного, мы накопили солидную экспертизу по обучению нейронных сетей на собственных датасетах сразу в нескольких сегментах: агро, рельсового транспорта и авто", - отметила генеральный директор Cognitive Pilot Ольга Ускова.