"Билайн" и Сеченовский университет создали ИИ-модель для оценки отторжения пересаженной почки
Ученые, ИТ-специалисты из ООО "МедТех ИИ" (совместное предприятие ПАО "Вымпелком" и Сеченовского университета) и врачи из НКЦ №1 РНЦХ им. Б.В. Петровского разработали модель ИИ для автоматической оценки фиброза и интерстициальной инфильтрации в гистологических исследованиях трансплантата почки. Нейросеть позволяет выявлять и оценивать признаки отторжения трансплантированного органа и может стать сервисом "второго мнения" для помощи в принятии врачебных решений.
Трансплантация органов – порой единственный способ спасти жизнь пациента и значительно улучшить ее качество. Но сам процесс трансплантации сложный и часто связан с различными осложнениями. В том числе с фиброзом тканей (увеличением количества соединительной ткани) и воспалением, которые сигнализируют об отторжении органа. Регулярное мониторирование состояния трансплантированного органа необходимо для своевременной коррекции терапевтической стратегии.
За 2023 г. в России провели 1789 операций по трансплантации почки, это около двух третьих всех операций по трансплантации. После операции пациент вынужден на протяжении всей жизни принимать терапию и регулярно проходить обследования. В рамках одного анализа врач-патолог изучает гистологический материал почки на предмет наличия признаков, сигнализирующих об отторжении органа, и классифицирует их по системе Банф. Существующая классификация полезна для диагностики отторжения трансплантата почки, однако она сталкивается с ограничениями из-за различной согласованности оценок врачей и частых изменений в критериях оценки.
"Есть существенная проблема, с которой сталкивается медицина - это проведение корректной терапии после трансплантации. При создании модели для определения отторжения пересаженной почки наша команда проверила гипотезу, что с помощью "умной" количественной оценки возможно улучшить показатели этого направления. Искусственный интеллект может выступить помощником для врача: помочь стандартизировать исследования и повысить точность определения дальнейшей терапии. Модель позволит не только помочь врачам с рутинными задачами, но и открывает новые возможности для исследований", - сообщил директор по искусственному интеллекту и цифровым продуктам "Билайна", генеральный директор ООО "МедТех ИИ" Константин Романов.
Команда ученых, врачей-патологоанатомов и дата-сайентистов из команды по искусственному интеллекту и большим данным "Билайна" и Сеченовского университета разработали ИИ-решение для оценки фиброза и интерстициальной инфильтрации в гистологических препаратов трансплантата почки. Модель выделяет структурно-функциональные элементы почки (почечные клубочки, канальцы, артерии и строму) и выявляет потенциальные участки интерстициальной инфильтрации и фиброза. ИИ помогает стандартизировать исследования и количественно оценить морфологические характеристики, улучшив воспроизводимость в клинической практике. Такой подход помогает специалистам отличить пограничные изменения от отторжения. ИИ-модель продемонстрировала высокую точность предсказания клинических баллов по классификации Банф, что делает ее перспективным инструментом помощи для патологоанатомов.
"Рассчитанные нейросетью метрики позволяют различить пограничные случаи и случаи с острым клеточным отторжением с точностью более 95%. Данная модель поможет врачам ставить диагнозы, поддержанные аргументированными метриками, в сложных случаях патологических изменений в гистологических препаратах. Применение искусственного интеллекта в нефропатологии имеет потенциал для повышения точности и эффективности диагностики", - отметил заведующий Лабораторией цифрового микроскопического анализа Института регенеративной медицины НТПБ Сеченовского Университета Алексей Файзуллин.
"Последнее слово в постановке гистологического диагноза всегда остаётся за специалистом, однако автоматическое определение не только наличия, но и площади патологических изменений в ткани может помочь повысить точность и воспроизводимость диагностики", - прокомментировала заведующая патологоанатомическим отделением НКЦ №1 РНЦХ им. акад. Б.В. Петровского, врач-патологоанатом, член Российского общества онкопатологов Светлана Соловьёва.
По данным на октябрь 2024 г., планируется проведение клинических испытаний модели и ее дальнейшая регистрация для использования в медучреждениях.